

React JS Notes:

Introduction:

• React is JavaScript library created by Facebook.

• Most popular JavaScript library for creating UI.

• Also used by Netflix & Instagram.

• Used to create Single Page Applications (SPA)

• We can build modern, fast Single Page Applications or websites with

React.

Is React JS a Library or a Framework?

• React is a Library, not a Framework.

What is a Library?

• A library in programming can be explained as a collection of codes. We

use a library to write code in a much simpler way or to import a feature

from it into our project. JQuery is a library for example.

• We can write JavaScript much simpler by using JQuery, or we can import

written JQuery features to our project. The project itself is not

dependent on a library.

What is a Framework?

• A Framework, on the other hand, is a complete package of code with its

own functionalities & libraries. A Framework has its own rules, you don’t

have much flexibility and the project is dependent on the Framework

you use. Angular is an example of a framework.

How React actually works?

React Virtual DOM

• To understand the importance of React Virtual DOM, first, you need to

know what DOM (Document Object Model) is.

• DOM is basically the representation of the HTML code in a webpage. The

document is the webpage itself, the objects are the HTML tags. And

finally, the model of DOM is a tree structure:

What is the benefit of Virtual DOM?

• Each time you make a change in the code, DOM will be completely

updated and rewritten. This is an expensive operation and consumes lots

of time. In this point, React provides a solution: The Virtual DOM.

• So when something changes:

o React first creates an exact copy of the DOM
o Then React figures out which part is new and only updates that

specific part in the Virtual DOM

o Finally, React copies only the new parts of the Virtual DOM to the
actual DOM, rather than completely rewriting it.

• This approach makes a webpage much faster than a standard webpage.

That’s also one of the reasons why React is so popular.

React’s Core Syntax: JSX

• In classic Frontend programming, we have separated HTML, CSS and JS

file structures. React is a bit different. We don’t have separated HTML

files in React.

• In JSX syntax, we write HTML tags inside JavaScript.

• In React, for example, a simple JavaScript variable can be like this:

const element = <h1>Hello!</h1>;

• Normally, we can’t assign an HTML tag to a JavaScript variable. But with

JSX, we can. The code above you see is neither HTML nor JavaScript. It’s

an example of JSX.

So what is this JSX?

• JSX (JavaScript XML) is a syntax extension to JavaScript used by React.

JSX is basically used to write HTML tags inside JavaScript. Later, the JSX

code will be translated into normal JavaScript, by Babel.

• In summary, React doesn’t have HTML files, HTML tags are rendered

directly inside JavaScript. This approach makes React faster.

Do I have to work with JSX?

• You don’t have to use JSX with React, but it is strongly recommended.

JSX simplifies React and makes it easier to read. Let me give an

example of React code with and without JSX.

React with JSX:

React without JSX:

Some important rules about JSX:

• We can’t return more than one HTML element at once, but we can wrap

the elements inside a parent HTML tag:

• We can use JSX inside for loops, if-else cases:

• HTML attribute names like “class” becomes “className”.

• HTML tags must always be closed.

React Installation:

• React requires Nodejs.

• After installing Nodejs, open your Terminal or Command Prompt and

type the following command to create your React app:

• npx – It is a tool for executing node packages. [node package runner.]

x – executor.

What is a React Component?

• A component is an independent, reusable code block, which divides

the UI into smaller pieces.

• In other words, we can think of components as LEGO blocks. Likewise

we create a LEGO structure from many little LEGO blocks, we create a

webpage or UI from many little code blocks (components).

• Smaller code blocks. Easy to maintain. They are reusable, easier to

read, write & test.

• React has 2 types of components: Functional (Stateless) and Class

(Stateful).

Functional (Stateless) Components:

• A functional component is basically a JavaScript (or ES6) function which

returns a React element. According to React official docs, the function

below is a valid React component:

• This function is a valid React component because it accepts a single

“props” (which stands for properties) object argument with data and

returns a React element. — reactjs.org

• So we can define a React functional component as a JS Function:

• or as an ES6 arrow function:

• Both of the functions are valid React components. They may take props

as an argument (when necessary), but they must return a React

element.

• IMPORTANT: Functional components are also known as stateless

components because, in the past, we couldn’t do more complex things

like React State (data) management or life-cycle methods in functional

components.

• However, React introduced React Hooks in version 16.8, which now

allows us to use state & other features in functional components.

• So a React Functional Component:

o is a JavaScript / ES6 function
o must return a React element
o take props as parameter if necessary

Class (Stateful) Components

• Class components are ES6 classes. They are more complex than functional

components including constructors, life-cycle methods, render() function

and state (data) management.

• In the example below, we can see how a simple class component looks

like:

• Here, the ExampleComponent class extends Component, so React

understands that this class is a component, and it renders (returns) a

React Element.

• So, a React class component:

o is an ES6 class, will be a component once it ‘extends’ React
component.

o can accept props (in the constructor) if needed
o can maintain its own data with state

o must have a render() method which returns a React element
(JSX), or null

How to call a component?

• A component is being called like an HTML tag, but starting with a capital

letter:

<ExampleComponent />

• Components are the core of React. Having a better knowledge of when

and how to use functional & class components not only makes your React

app better performance, readable and testable, but also makes you a

better programmer.

What is “Props” and how to use it in React?

• React has a different approach to data flow & manipulation than other

frameworks.

What is Props?

• React is a component-based library which divides the UI into little

reusable pieces. In some cases, those components need to communicate

(send data to each other) and the way to pass data between components

is by using props.

• “Props” is a special keyword in React, which stands for properties and is

being used for passing data from one component to another.

• But the important part here is that data with props are being passed in a

uni-directional flow. (one way from parent to child)

• Furthermore, props data is read-only, which means that data coming

from the parent should not be changed by child components.

Using Props in React

• Firstly, define an attribute and its value(data)

• Then pass it to child component(s) by using Props

• Finally, render the Props Data

• The problem here is that, when we call the ChildComponent multiple

times:

• It always renders the same string again and again:

• But what we like to do here is to get dynamic outputs, because each

child component may have different data and let’s see how we can solve

this issue by using props…

• 1st Step: Defining Attribute & Data

• We already know that we can assign attributes and values to HTML tags:

• Likewise, we can do the same for React components. We can define our

own attributes & assign values with interpolation { }:

• Let’s declare a “text” attribute to the ChildComponent and then assign a

string value: “I’m the 1st child”.

• Now the ChildComponent has a property and a value. Next, we need to

pass it via Props.

• 2nd Step: Passing Data using Props

• OK, now let’s take the “I’m the 1st child!” string and pass it by using

props.

• Passing props is very simple. Like we pass arguments to a function, we

pass props into a React component and props bring all the necessary

data.

• Arguments passed to a function:

• Arguments passed to a React component:

• Props are arguments passed into React components.

• Final Step: Rendering Props Data

• Prop is an Object

• we will render the props object by using string interpolation:

• {props}

• Log props to the console.

• console.log(props);

• As we can see, Props returns back an object. In JavaScript, we can

access to object elements with dot(.) notation. So, let’s render our text

property with interpolation:

• And that’s it! We’ve achieved to render the data coming from the parent

component.

• let’s do the same for other child components:

Recap

• As we can see, each ChildComponent renders now its own prop data. So

this is how we can use Props for passing data and converting static

components into dynamic ones.

• Props stand for properties and is a special keyword in React

• Props are being passed to components like function arguments

• Props can only be passed to components in one-way (parent to child)

• Props data is immutable (read-only)

Understanding State:

• Props are only being used for passing data. They are read-only which

means that components receiving data by props are not able to change

it.

• However, in some cases, a component may need to manipulate data and

that’s not possible with props.

• So React provides another feature for data manipulation which is known

as State.

What is State?

• State is a special object that holds dynamic data, which means that

state can change over time and anytime based on user actions or certain

events.

• State is private and belongs only to its component where defined,

cannot be accessed from outside, but can be passed to child components

via props.

• State is initialized inside its component’s constructor method.

• When a change in the state is made, state shouldn’t be modified

directly. Instead, state updates should be made with a special method

called setState().

• State should not be overly-used in order to prevent performance

problems.

Using State in a Component

• In the earlier days, state could only be used in class components, but

after the introduction of React Hooks, state now can be used both in

class & functional components.

Creating the State

• A class has a special method called constructor() and it is being

called during object creation. We can also initialize our object

properties.

• The same rule applies to state. Since state is also an object, it should

be initialized inside the constructor method:

• and later we can render the properties of the state object with

JavaScript’s dot notation, inside the render () method:

Updating the State

• A Component’s state can change under some circumstances like a

server response or user interaction (clicking on a button, scrolling

the page etc).

• So when data changes, when a change in the state happens, React

takes this information and updates the UI.

• The important point here is that we should not modify the state

directly.

• Do Not Modify State Directly — React Official Docs

Using setState()

• Below you can see the right way of state changes in React:

• The reason why we should use setState() is that because it’s the only

way to notify React for data changes. Otherwise React won’t be notified

and won’t be able to update the UI.

Array.map() method

• The map() method is one of the most useful and often used.

• It calls the function for each element of the array and returns the array

of results.

• The map() method calls the provided function once for each element

in an array, in order.

• Note: map() does not execute the function for array elements

without values.

• Note: this method does not change the original array.

let lengths = ["Bilbo", "Gandalf", "Nazgul"].map(item => item.length);

console.log(lengths); // 5,7,6

Array.filter() method

• The filter() method creates an array filled with all array elements that

pass a test (provided as a function).

• Note: filter() does not execute the function for array elements without

values.

• Note: filter() does not change the original array.

let users = [

{id: 1, name: "John"},

{id: 2, name: "Pete"},

{id: 3, name: "Mary"}

];

// returns array of the first two users

let someUsers = users.filter(item => item.id < 3);

console.log(someUsers.length); // 2

Simple App that we want to build using above concepts:

Lifecycle methods:

• Every component of React application goes through some phases during

the life cycle.

• There are main 3 lifecycle phases of components:

o Mount phase
o Update phase

o Unmount phase

Mount Phase:

• This is a phase where component instance is created and inserted into

the DOM.

• Mount phase has 3 life cycle methods: constructor, render,

componentDidMount. React will call these methods in the same

sequence.

componentDidMount()

• Whenever this method is called, React has already rendered our

component and put it into the DOM. Therefore, if there is any

initialization you want to perform that relies on the DOM, do it here

and now.

• State: You can set the state with this.setState(). Whenever you do this,

it will also trigger a re-render of the component.

• Use Cases: You can use componentDidMount to fetch data from a

server with AJAX calls. We can add event listeners inside

componentDidMount.

Update Phase:

• If props or state of a component are changed for whatever reason, an

update of the component is performed. However, this means that the

component has to be re-rendered.

• In this phase, we have 2 lifecycle methods, render and

componentDidUpdate.

Routing:

What is react router?

React router is a routing library built on top of the react which is used to create the

routing in react apps.

How to install the react router?

To install the react router you need to download the react-router-dom package by

running the following commands.

npm install react-router-dom

• React router gives us three components [Route,Link,BrowserRouter] which help

us to implement the routing.

• In the Route component, we need to pass the two props

o path: it means we need to specify the path.

o component: which component user needs to see when they will navigate
to that path.

What is a 404 page?

A 404 page is also called not found page it means when a user navigates to the wrong

path that doesn’t present in the website we need to show the not found page.

How to add a 404 page in react?

We need to import another component called Switch which is provided by the react

router.

What is Switch?

<Switch> returns only one first matching route.

Switch component helps us to render the components only when path matches

otherwise it fallbacks to the not found component.

URL Parameters

URL parameters helps us to render the same component based on its dynamic url.

<Route path="users/:id" component={Users} />

• How to access route parameters:

this.props.match.params.id

NavLink:

It is used to style the active routes so that user knows on which page he or she is

currently browsing on the website.

What is the difference between NavLink and Link?

The link is used to navigate the different routes on the site. But NavLink is used to

add the style attributes to the active routes.

Programmatically navigate

What is Programmatic navigation?

It means we need to redirect the user when an event happens on that route.

For example, when a user is successfully logged in he or she will be redirected to the

home page.

How to navigate programmatically in react-router?

To navigate programmatically we need to take the help of history object which is

passed by the react-router.

Redux:

Connect(mapStateToProps, mapDispatchToProps).

1) Create mapDispatchToProps.

2) It is function that accepts dispatch as an argument and returns a function

which is responsible for dispatching an action.

3) Dispatch function is getting action from action creator.

4) Action Creator: It is a callback function that returns an action.

It is a place where we have to make asynch calls and once the operation is

done, we have to continue dispatching an action.

